Skip to main content

matplotlib : subplot with polar

Polar plots in matplotlib are generated using the polar(theta, R) command. The source for this command is simply (from the amazing '??' feature of IPython):

In [37]: m.polar??
Type: function
Base Class:
String Form:
Namespace: Interactive
File: c:\python25\lib\site-packages\matplotlib-0.91.2-py2.5-win32.egg\
Definition: m.polar(*args, **kwargs)
def polar(*args, **kwargs):
POLAR(theta, r)

Make a polar plot. Multiple theta, r arguments are supported,
with format strings, as in plot.
ax = gca(polar=True)
ret = ax.plot(*args, **kwargs)
return ret

In order to make a subplot polar we simply add the polar=True argument thus:
m.subplot(nrows, ncols, nsubfig, polar=True)

Otherwise, it is treated as a cartesian plot even if you do m.polar(..) afterwards.


  1. Nice post, by far the most informative and concise example of how to plot a polar subplot I've found.


Post a Comment

Popular posts from this blog

Flowing text in inkscape (Poster making)

You can flow text into arbitrary shapes in inkscape. (From a hint here).

You simply create a text box, type your text into it, create a frame with some drawing tool, select both the text box and the frame (click and shift) and then go to text->flow into frame.


The omnipresent anonymous asked:
Trying to enter sentence so that text forms the number three...any ideas?
The solution:
Type '3' using the text toolConvert to path using object->pathSize as necessaryRemove fillUngroupType in actual text in new text boxSelect the text and the '3' pathFlow the text

Python: Multiprocessing: passing multiple arguments to a function

Write a wrapper function to unpack the arguments before calling the real function. Lambda won't work, for some strange un-Pythonic reason.

import multiprocessing as mp def myfun(a,b): print a + b def mf_wrap(args): return myfun(*args) p = mp.Pool(4) fl = [(a,b) for a in range(3) for b in range(2)] #mf_wrap = lambda args: myfun(*args) -> this sucker, though more pythonic and compact, won't work, fl)

Pandas panel = collection of tables/data frames aligned by index and column

Pandas panel provides a nice way to collect related data frames together while maintaining correspondence between the index and column values:

import pandas as pd, pylab #Full dimensions of a slice of our panel index = ['1','2','3','4'] #major_index columns = ['a','b','c'] #minor_index df = pd.DataFrame(pylab.randn(4,3),columns=columns,index=index) #A full slice of the panel df2 = pd.DataFrame(pylab.randn(3,2),columns=['a','c'],index=['1','3','4']) #A partial slice df3 = pd.DataFrame(pylab.randn(2,2),columns=['a','b'],index=['2','4']) #Another partial slice df4 = pd.DataFrame(pylab.randn(2,2),columns=['d','e'],index=['5','6']) #Partial slice with a new column and index pn = pd.Panel({'A': df}) pn['B'] = df2 pn['C'] = df3 pn['D'] = df4 for key in pn.items: print pn[key] -> output …