Skip to main content

Harvard has a new, high technology ID card with your name on it

But, mommy, how do I carry it around?

Harvard decided the old card wasn't good enough and has a new one with two stripes. The new card comes with all sorts of warnings, reminding us that Harvard really made its name from its Law school.I do what a lot of other people do which is to attach it to a lanyard. Our lab has a stock of those rubber grip lanyard so that shouldn't damage this card right? Well, be that as it may, this two stripe thing isn't going to work out.Attaching the lanyard to the middle of the card does not allow proper clearance for both strips and of course attaching the lanyard on one side means you have to detach for the other side.

Comments

Popular posts from this blog

Flowing text in inkscape (Poster making)

You can flow text into arbitrary shapes in inkscape. (From a hint here).

You simply create a text box, type your text into it, create a frame with some drawing tool, select both the text box and the frame (click and shift) and then go to text->flow into frame.

UPDATE:

The omnipresent anonymous asked:
Trying to enter sentence so that text forms the number three...any ideas?
The solution:
Type '3' using the text toolConvert to path using object->pathSize as necessaryRemove fillUngroupType in actual text in new text boxSelect the text and the '3' pathFlow the text

Python: Multiprocessing: passing multiple arguments to a function

Write a wrapper function to unpack the arguments before calling the real function. Lambda won't work, for some strange un-Pythonic reason.


import multiprocessing as mp def myfun(a,b): print a + b def mf_wrap(args): return myfun(*args) p = mp.Pool(4) fl = [(a,b) for a in range(3) for b in range(2)] #mf_wrap = lambda args: myfun(*args) -> this sucker, though more pythonic and compact, won't work p.map(mf_wrap, fl)

Pandas panel = collection of tables/data frames aligned by index and column

Pandas panel provides a nice way to collect related data frames together while maintaining correspondence between the index and column values:


import pandas as pd, pylab #Full dimensions of a slice of our panel index = ['1','2','3','4'] #major_index columns = ['a','b','c'] #minor_index df = pd.DataFrame(pylab.randn(4,3),columns=columns,index=index) #A full slice of the panel df2 = pd.DataFrame(pylab.randn(3,2),columns=['a','c'],index=['1','3','4']) #A partial slice df3 = pd.DataFrame(pylab.randn(2,2),columns=['a','b'],index=['2','4']) #Another partial slice df4 = pd.DataFrame(pylab.randn(2,2),columns=['d','e'],index=['5','6']) #Partial slice with a new column and index pn = pd.Panel({'A': df}) pn['B'] = df2 pn['C'] = df3 pn['D'] = df4 for key in pn.items: print pn[key] -> output …