Skip to main content

Annoying bug in PyTables (affects Big Data analysis with Pandas)

Pandas HDF5 interface through PyTables is awesome because it allows you to select and process small chunks of data from a much larger data file stored on disk. PyTables, however, has an annoying and subtle bug and I just wanted to point you to it so that you don't have to spend hours debugging code like I did.

In short, if you have a DataFrame, and a column of that DF starts with a NaN, any select statements that you run with that conditions on that column will return empty (you won't get any results back, ever). There is a work around, but I chose to use a dummy value instead.

This shook my confidence in Pandas as an analysis platform a bit (though it is really PyTable's fault).

Comments

Popular posts from this blog

Python: Multiprocessing: passing multiple arguments to a function

Write a wrapper function to unpack the arguments before calling the real function. Lambda won't work, for some strange un-Pythonic reason.


import multiprocessing as mp def myfun(a,b): print a + b def mf_wrap(args): return myfun(*args) p = mp.Pool(4) fl = [(a,b) for a in range(3) for b in range(2)] #mf_wrap = lambda args: myfun(*args) -> this sucker, though more pythonic and compact, won't work p.map(mf_wrap, fl)

Flowing text in inkscape (Poster making)

You can flow text into arbitrary shapes in inkscape. (From a hint here).

You simply create a text box, type your text into it, create a frame with some drawing tool, select both the text box and the frame (click and shift) and then go to text->flow into frame.

UPDATE:

The omnipresent anonymous asked:
Trying to enter sentence so that text forms the number three...any ideas?
The solution:
Type '3' using the text toolConvert to path using object->pathSize as necessaryRemove fillUngroupType in actual text in new text boxSelect the text and the '3' pathFlow the text

Drawing circles using matplotlib

Use the pylab.Circle command

import pylab #Imports matplotlib and a host of other useful modules cir1 = pylab.Circle((0,0), radius=0.75, fc='y') #Creates a patch that looks like a circle (fc= face color) cir2 = pylab.Circle((.5,.5), radius=0.25, alpha =.2, fc='b') #Repeat (alpha=.2 means make it very translucent) ax = pylab.axes(aspect=1) #Creates empty axes (aspect=1 means scale things so that circles look like circles) ax.add_patch(cir1) #Grab the current axes, add the patch to it ax.add_patch(cir2) #Repeat pylab.show()