Skip to main content

Python 'or'

I've been trying to write more Pythonic code. I'm sure everyone has their own definition of what Pythonic is, but everyone will agree on things like using list/dict comprehensions where possible and so on and so forth.

I was perusing some code written by some colleagues and found this:

    push_data = {'message': container.message or 'NO COMMIT MESSAGE',

This took me to the basic definition of Python's or keyword and, notably, this clause: "These only evaluate their second argument if needed for their outcome."

Way cool! I would previously have used a construction like

    push_data = {'message': container.message if container.message else 'NO COMMIT MESSAGE',

and patted myself on the back for being Pythonic, but there is an even better way to do it.

I must say, though, that I would not use the corresponding and construction because it is not so intuitive to me.

0 and 56

Comments

Popular posts from this blog

Flowing text in inkscape (Poster making)

You can flow text into arbitrary shapes in inkscape. (From a hint here).

You simply create a text box, type your text into it, create a frame with some drawing tool, select both the text box and the frame (click and shift) and then go to text->flow into frame.

UPDATE:

The omnipresent anonymous asked:
Trying to enter sentence so that text forms the number three...any ideas?
The solution:
Type '3' using the text toolConvert to path using object->pathSize as necessaryRemove fillUngroupType in actual text in new text boxSelect the text and the '3' pathFlow the text

Pandas panel = collection of tables/data frames aligned by index and column

Pandas panel provides a nice way to collect related data frames together while maintaining correspondence between the index and column values:


import pandas as pd, pylab #Full dimensions of a slice of our panel index = ['1','2','3','4'] #major_index columns = ['a','b','c'] #minor_index df = pd.DataFrame(pylab.randn(4,3),columns=columns,index=index) #A full slice of the panel df2 = pd.DataFrame(pylab.randn(3,2),columns=['a','c'],index=['1','3','4']) #A partial slice df3 = pd.DataFrame(pylab.randn(2,2),columns=['a','b'],index=['2','4']) #Another partial slice df4 = pd.DataFrame(pylab.randn(2,2),columns=['d','e'],index=['5','6']) #Partial slice with a new column and index pn = pd.Panel({'A': df}) pn['B'] = df2 pn['C'] = df3 pn['D'] = df4 for key in pn.items: print pn[key] -> output …

Python: Multiprocessing: passing multiple arguments to a function

Write a wrapper function to unpack the arguments before calling the real function. Lambda won't work, for some strange un-Pythonic reason.


import multiprocessing as mp def myfun(a,b): print a + b def mf_wrap(args): return myfun(*args) p = mp.Pool(4) fl = [(a,b) for a in range(3) for b in range(2)] #mf_wrap = lambda args: myfun(*args) -> this sucker, though more pythonic and compact, won't work p.map(mf_wrap, fl)