The h5py library is a very nice wrapper round the HDF5 data storage format/library. The authors of h5py have done a super job of aligning HDF5 data types with numpy data types including structured arrays, which means you can store variable lengths strings and jagged arrays. One of the advantages of HDF5 for large datasets is that you can load slices of the data into memory very easily and transparently - h5py and HDF5 take care of everything - compression, chunking, buffering - for you. As I was playing around with h5py one thing tripped me up. h5py has an "in memory" mode where you can create HDF5 files in memory (driver='core') option which is great when prototyping or writing tests, since you don't have to clean up files after you are done. In the documentation it says, even if you have an in-memory file, you need to give it a name. I found this requirement funny, because I assumed that the fake file was being created in a throw away memory buffer attached ...
I've moved to kaushikghose.wordpress.com