Skip to main content

Docopt is amazing

I love the command line and I love Python. So, naturally, I am an avid user of the argparse module bundled with Python. Today I discovered docopt and I am so totally converted. argparse is great but there is a bunch of setup code that you have to write and often things look very boilerplate-y and messy and it just looks like there should be a more concise way of expressing the command line interface to a program. Enter docopt

docopt allows you to describe your commandline interface in your doc string and then it parses this description and creates a command line parser that returns a dictionary with the values for all the options filled in. Just like that.

So, for example, one of my scripts has a docstring that looks like

Usage:
  compute_eye_epoch [-R DATAROOT] [-x EXCEL] [-d DATABASE] [-e EPOCH] [-f|-F] [-q]

Options:
  -h --help     Show this screen and exit.
  -R DATAROOT   Root of data directory [default: ../../Data]
  -x EXCEL      Spreadsheet with sessions/trials etc [default: ../../Notes/sessions_and_neurons.xlsx]
  -d DATABASE   sqlite3 database we write to [default: test.sqlite3]
  -e EPOCH      Name of epoch we want to process
  -f            Force recomputation of all entries for this epoch
  -F            Force storing of epoch (automatically forces recomputation)
  -q            Quiet mode (print only ERROR level logger messages)

And the __main__ part of the code is

import docopt

if __name__ == '__main__':
  arguments = docopt.docopt(__doc__, version='v1')
  print arguments

If I call the program with -h then I get the usage information printed and the program exits. If I call it with other options args will be filled out, for example:

{'-F': False,
 '-R': '../../Data',
 '-d': 'test.sqlite3',
 '-e': None,
 '-f': False,
 '-q': False,
 '-x': '../../Notes/sessions_and_neurons.xlsx'}

This totally removes the barrier to creating command line interfaces and removes clutter from the __main__ section of the code! Amazing! Give it a try!

Comments

Popular posts from this blog

Flowing text in inkscape (Poster making)

You can flow text into arbitrary shapes in inkscape. (From a hint here).

You simply create a text box, type your text into it, create a frame with some drawing tool, select both the text box and the frame (click and shift) and then go to text->flow into frame.

UPDATE:

The omnipresent anonymous asked:
Trying to enter sentence so that text forms the number three...any ideas?
The solution:
Type '3' using the text toolConvert to path using object->pathSize as necessaryRemove fillUngroupType in actual text in new text boxSelect the text and the '3' pathFlow the text

Pandas panel = collection of tables/data frames aligned by index and column

Pandas panel provides a nice way to collect related data frames together while maintaining correspondence between the index and column values:


import pandas as pd, pylab #Full dimensions of a slice of our panel index = ['1','2','3','4'] #major_index columns = ['a','b','c'] #minor_index df = pd.DataFrame(pylab.randn(4,3),columns=columns,index=index) #A full slice of the panel df2 = pd.DataFrame(pylab.randn(3,2),columns=['a','c'],index=['1','3','4']) #A partial slice df3 = pd.DataFrame(pylab.randn(2,2),columns=['a','b'],index=['2','4']) #Another partial slice df4 = pd.DataFrame(pylab.randn(2,2),columns=['d','e'],index=['5','6']) #Partial slice with a new column and index pn = pd.Panel({'A': df}) pn['B'] = df2 pn['C'] = df3 pn['D'] = df4 for key in pn.items: print pn[key] -> output …

Drawing circles using matplotlib

Use the pylab.Circle command

import pylab #Imports matplotlib and a host of other useful modules cir1 = pylab.Circle((0,0), radius=0.75, fc='y') #Creates a patch that looks like a circle (fc= face color) cir2 = pylab.Circle((.5,.5), radius=0.25, alpha =.2, fc='b') #Repeat (alpha=.2 means make it very translucent) ax = pylab.axes(aspect=1) #Creates empty axes (aspect=1 means scale things so that circles look like circles) ax.add_patch(cir1) #Grab the current axes, add the patch to it ax.add_patch(cir2) #Repeat pylab.show()