Skip to main content

Python: Maps, Comprehensions and Loops

Most of you will have seen this already but:

c = range(1000)
d = range(1,1001)

def foo(a,b):
  return b - a


def map_foo():
  e = map(foo, c, d)
  return e


def comprehend_foo():
  e = [foo(a, b) for (a,b) in zip(c,d)]
  return e


def loop_foo():
  e = []
  for (a,b) in zip(c,d):
    e.append(foo(a, b))
  return e

def bare_loop():
  e = []
  for (a,b) in zip(c,d):
    e.append(b - a)
  return e

def bare_comprehension():
  e = [b - a for (a,b) in zip(c,d)]
  return e

"""
python -mtimeit -s'import test' 'test.map_foo()'
python -mtimeit -s'import test' 'test.comprehend_foo()'
python -mtimeit -s'import test' 'test.loop_foo()'
python -mtimeit -s'import test' 'test.bare_loop()'
python -mtimeit -s'import test' 'test.bare_comprehension()'
"""

In order of speediness:

test.bare_comprehension() -> 10000 loops, best of 3: 97.9 usec per loop
test.map_foo() -> 10000 loops, best of 3: 125 usec per loop
test.bare_loop() -> 10000 loops, best of 3: 135 usec per loop
test.comprehend_foo() -> 10000 loops, best of 3: 159 usec per loop
test.loop_foo() -> 1000 loops, best of 3: 202 usec per loop

So, where-ever you can, use map. The reason map_foo is slower than bare_comprehension is the function overhead.

Comments

Popular posts from this blog

Flowing text in inkscape (Poster making)

You can flow text into arbitrary shapes in inkscape. (From a hint here).

You simply create a text box, type your text into it, create a frame with some drawing tool, select both the text box and the frame (click and shift) and then go to text->flow into frame.

UPDATE:

The omnipresent anonymous asked:
Trying to enter sentence so that text forms the number three...any ideas?
The solution:
Type '3' using the text toolConvert to path using object->pathSize as necessaryRemove fillUngroupType in actual text in new text boxSelect the text and the '3' pathFlow the text

Pandas panel = collection of tables/data frames aligned by index and column

Pandas panel provides a nice way to collect related data frames together while maintaining correspondence between the index and column values:


import pandas as pd, pylab #Full dimensions of a slice of our panel index = ['1','2','3','4'] #major_index columns = ['a','b','c'] #minor_index df = pd.DataFrame(pylab.randn(4,3),columns=columns,index=index) #A full slice of the panel df2 = pd.DataFrame(pylab.randn(3,2),columns=['a','c'],index=['1','3','4']) #A partial slice df3 = pd.DataFrame(pylab.randn(2,2),columns=['a','b'],index=['2','4']) #Another partial slice df4 = pd.DataFrame(pylab.randn(2,2),columns=['d','e'],index=['5','6']) #Partial slice with a new column and index pn = pd.Panel({'A': df}) pn['B'] = df2 pn['C'] = df3 pn['D'] = df4 for key in pn.items: print pn[key] -> output …

Python: Multiprocessing: passing multiple arguments to a function

Write a wrapper function to unpack the arguments before calling the real function. Lambda won't work, for some strange un-Pythonic reason.


import multiprocessing as mp def myfun(a,b): print a + b def mf_wrap(args): return myfun(*args) p = mp.Pool(4) fl = [(a,b) for a in range(3) for b in range(2)] #mf_wrap = lambda args: myfun(*args) -> this sucker, though more pythonic and compact, won't work p.map(mf_wrap, fl)