Skip to main content

Storing state in a Python function

This one blew me away. You can store state in a function, just like you would any object. These are called function attributes. As an aside, I also learned that using a try: except clause is ever slightly so faster than an if.

def foo(a):
  try:
    foo.b += a
  except AttributeError:
    foo.b = a
  return foo.b

def foo2(a):
  if hasattr(foo2, 'b'):
    foo2.b += a
  else:
    foo2.b = a
  return foo2.b

if __name__ == '__main__':
  print [foo(x) for x in range(10)]
  print [foo2(x) for x in range(10)]

"""
python -mtimeit -s'import test' '[test.foo(x) for x in range(100)]'
python -mtimeit -s'import test' '[test.foo2(x) for x in range(100)]'
"""

Giving us:

python test.py
[0, 1, 3, 6, 10, 15, 21, 28, 36, 45]
[0, 1, 3, 6, 10, 15, 21, 28, 36, 45]

python -mtimeit -s'import test' '[test.foo(x) for x in range(100)]'  ->  10000 loops, best of 3: 29.4 usec per loop
python -mtimeit -s'import test' '[test.foo2(x) for x in range(100)]' -> 10000 loops, best of 3: 39.1 usec per loop

Comments

Popular posts from this blog

A note on Python's __exit__() and errors

Python's context managers are a very neat way of handling code that needs a teardown once you are done. Python objects have do have a destructor method ( __del__ ) called right before the last instance of the object is about to be destroyed. You can do a teardown there. However there is a lot of fine print to the __del__ method. A cleaner way of doing tear-downs is through Python's context manager , manifested as the with keyword. class CrushMe: def __init__(self): self.f = open('test.txt', 'w') def foo(self, a, b): self.f.write(str(a - b)) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.f.close() return True with CrushMe() as c: c.foo(2, 3) One thing that is important, and that got me just now, is error handling. I made the mistake of ignoring all those 'junk' arguments ( exc_type, exc_val, exc_tb ). I just skimmed the docs and what popped out is that you need to return True or...

Store numpy arrays in sqlite

Use numpy.getbuffer (or sqlite3.Binary ) in combination with numpy.frombuffer to lug numpy data in and out of the sqlite3 database: import sqlite3, numpy r1d = numpy.random.randn(10) con = sqlite3.connect(':memory:') con.execute("CREATE TABLE eye(id INTEGER PRIMARY KEY, desc TEXT, data BLOB)") con.execute("INSERT INTO eye(desc,data) VALUES(?,?)", ("1d", sqlite3.Binary(r1d))) con.execute("INSERT INTO eye(desc,data) VALUES(?,?)", ("1d", numpy.getbuffer(r1d))) res = con.execute("SELECT * FROM eye").fetchall() con.close() #res -> #[(1, u'1d', <read-write buffer ptr 0x10371b220, size 80 at 0x10371b1e0>), # (2, u'1d', <read-write buffer ptr 0x10371b190, size 80 at 0x10371b150>)] print r1d - numpy.frombuffer(res[0][2]) #->[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] print r1d - numpy.frombuffer(res[1][2]) #->[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Note that for work where data ty...