Skip to main content

Installing analysis tools on a mac via commandline


ftp http://www.python.org/ftp/python/2.5.4/python-2.5.4-macosx.dmg
sudo hdid python-2.5.4-macosx.dmg
sudo installer -pkg /Volumes/Universal\ MacPython\ 2.5.4/MacPython.mpkg/ -target "/"
sudo /Applications/MacPython\ 2.5/Update\ Shell\ Profile.command ##!!!IMPORTANT!!!

ftp http://pypi.python.org/packages/2.5/s/setuptools/setuptools-0.6c9-py2.5.egg
sudo sh setuptools-0.6c9-py2.5.egg

ftp http://ipython.scipy.org/dist/ipython-0.9.1-py2.5.egg
sudo easy_install ipython-0.9.1-py2.5.egg

ftp http://r.research.att.com/gfortran-4.2.3.dmg
sudo hdid gfortran-4.2.3.dmg
sudo installer -pkg /Volumes/GNU\ Fortran\ 4.2.3/gfortran.pkg/ -target "/"


ftp ftp://ftp.fftw.org/pub/fftw/fftw-3.2.1.tar.gz
tar -xvf fftw-3.2.1.tar.gz
cd fftw-3.2.1
./configure
make -j4
sudo make install

ftp http://downloads.sourceforge.net/numpy/numpy-1.2.1-py2.5-macosx10.5.dmg?use_mirror=internap
sudo hdid numpy-1.2.1-py2.5-macosx10.5.dmg
sudo installer -pkg /Volumes/numpy-1.2.1-py2.5-macosx10.5/numpy-1.2.1-py2.5-macosx10.5.mpkg/ -target "/"

ftp http://downloads.sourceforge.net/scipy/scipy-0.7.0-py2.5-macosx10.5.dmg?use_mirror=superb-east
sudo hdid scipy-0.7.0-py2.5-macosx10.5.dmg
sudo installer -pkg /Volumes/scipy-0.7.0-py2.5-macosx10.5/scipy-0.7.0-py2.5-macosx10.5.mpkg/ -target "/"

ftp http://downloads.sourceforge.net/matplotlib/matplotlib-0.98.5.2-py2.5-mpkg.zip?use_mirror=superb-west
unzip matplotlib-0.98.5.2-py2.5-mpkg.zip
sudo installer -pkg matplotlib-0.98.5.2-py2.5-macosx10.5.mpkg/ -target "/"

NOTE:

Wrong version of python: import pylab fails, import numpy gets 1.0.1: Doh! Forgot to set new path

  1. sudo /Applications/MacPython\ 2.5/Update\ Shell\ Profile.command #To set path to new python verion
  2. sudo sh setuptools-0.6c9-py2.5.egg #easy install should know of this
  3. sudo easy_install ipython-0.9.1-py2.5.egg
  4. sudo rm /usr/local/bin/ipython #To make sure
  5. logout and back in to have paths take hold

Comments

Popular posts from this blog

A note on Python's __exit__() and errors

Python's context managers are a very neat way of handling code that needs a teardown once you are done. Python objects have do have a destructor method ( __del__ ) called right before the last instance of the object is about to be destroyed. You can do a teardown there. However there is a lot of fine print to the __del__ method. A cleaner way of doing tear-downs is through Python's context manager , manifested as the with keyword. class CrushMe: def __init__(self): self.f = open('test.txt', 'w') def foo(self, a, b): self.f.write(str(a - b)) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.f.close() return True with CrushMe() as c: c.foo(2, 3) One thing that is important, and that got me just now, is error handling. I made the mistake of ignoring all those 'junk' arguments ( exc_type, exc_val, exc_tb ). I just skimmed the docs and what popped out is that you need to return True or...

Store numpy arrays in sqlite

Use numpy.getbuffer (or sqlite3.Binary ) in combination with numpy.frombuffer to lug numpy data in and out of the sqlite3 database: import sqlite3, numpy r1d = numpy.random.randn(10) con = sqlite3.connect(':memory:') con.execute("CREATE TABLE eye(id INTEGER PRIMARY KEY, desc TEXT, data BLOB)") con.execute("INSERT INTO eye(desc,data) VALUES(?,?)", ("1d", sqlite3.Binary(r1d))) con.execute("INSERT INTO eye(desc,data) VALUES(?,?)", ("1d", numpy.getbuffer(r1d))) res = con.execute("SELECT * FROM eye").fetchall() con.close() #res -> #[(1, u'1d', <read-write buffer ptr 0x10371b220, size 80 at 0x10371b1e0>), # (2, u'1d', <read-write buffer ptr 0x10371b190, size 80 at 0x10371b150>)] print r1d - numpy.frombuffer(res[0][2]) #->[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] print r1d - numpy.frombuffer(res[1][2]) #->[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Note that for work where data ty...