Skip to main content

Pandas panel = collection of tables/data frames aligned by index and column

Pandas panel provides a nice way to collect related data frames together while maintaining correspondence between the index and column values:


import pandas as pd, pylab

#Full dimensions of a slice of our panel
index = ['1','2','3','4'] #major_index
columns = ['a','b','c'] #minor_index

df = pd.DataFrame(pylab.randn(4,3),columns=columns,index=index) #A full slice of the panel
df2 = pd.DataFrame(pylab.randn(3,2),columns=['a','c'],index=['1','3','4']) #A partial slice
df3 = pd.DataFrame(pylab.randn(2,2),columns=['a','b'],index=['2','4']) #Another partial slice
df4 = pd.DataFrame(pylab.randn(2,2),columns=['d','e'],index=['5','6']) #Partial slice with a new column and index


pn = pd.Panel({'A': df})
pn['B'] = df2
pn['C'] = df3
pn['D'] = df4

for key in pn.items:
  print pn[key]

-> output

          a         b         c
1  0.243221 -0.142410  1.228757
2 -0.748140 -0.780719  0.644401
3  0.161369 -0.001034 -0.278070
4 -1.143613 -1.547082  0.025639
          a   b         c
1  1.165219 NaN  1.391501
2       NaN NaN       NaN
3 -1.484183 NaN  0.541619
4  0.810439 NaN -0.848142
          a         b   c
1       NaN       NaN NaN
2  1.310740  1.278829 NaN
3       NaN       NaN NaN
4  0.042748 -0.464065 NaN
    a   b   c
1 NaN NaN NaN
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN

One thing to note is that Panel does not expand along the minor and major axes.

Comments

Popular posts from this blog

A note on Python's __exit__() and errors

Python's context managers are a very neat way of handling code that needs a teardown once you are done. Python objects have do have a destructor method ( __del__ ) called right before the last instance of the object is about to be destroyed. You can do a teardown there. However there is a lot of fine print to the __del__ method. A cleaner way of doing tear-downs is through Python's context manager , manifested as the with keyword. class CrushMe: def __init__(self): self.f = open('test.txt', 'w') def foo(self, a, b): self.f.write(str(a - b)) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.f.close() return True with CrushMe() as c: c.foo(2, 3) One thing that is important, and that got me just now, is error handling. I made the mistake of ignoring all those 'junk' arguments ( exc_type, exc_val, exc_tb ). I just skimmed the docs and what popped out is that you need to return True or...

Store numpy arrays in sqlite

Use numpy.getbuffer (or sqlite3.Binary ) in combination with numpy.frombuffer to lug numpy data in and out of the sqlite3 database: import sqlite3, numpy r1d = numpy.random.randn(10) con = sqlite3.connect(':memory:') con.execute("CREATE TABLE eye(id INTEGER PRIMARY KEY, desc TEXT, data BLOB)") con.execute("INSERT INTO eye(desc,data) VALUES(?,?)", ("1d", sqlite3.Binary(r1d))) con.execute("INSERT INTO eye(desc,data) VALUES(?,?)", ("1d", numpy.getbuffer(r1d))) res = con.execute("SELECT * FROM eye").fetchall() con.close() #res -> #[(1, u'1d', <read-write buffer ptr 0x10371b220, size 80 at 0x10371b1e0>), # (2, u'1d', <read-write buffer ptr 0x10371b190, size 80 at 0x10371b150>)] print r1d - numpy.frombuffer(res[0][2]) #->[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] print r1d - numpy.frombuffer(res[1][2]) #->[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Note that for work where data ty...