Skip to main content

A small caution when using virtualenvs

Virtualenvs are a great way to test and develop code in insulated containers. My main use case is to have an insulated environment where I can mock install a package I'm developing and ensure that I've taken care of all the dependencies so that a stranger can use the package as is. The virtualenvwrapper package is a great utility that simplifies managing multiple virtual environments.

One caution I have to observe is that packages installed out side the virtual environment can interfere in ways that make behaviors inside the virtual env very mysterious. For example, before I started using virtual environments seriously I had installed the nose and tox modules in my base python install. A month or so afterwards I had created a new test environment and was doing pip install -e . to test whether a package I was writing would install correctly on a fresh environment.

Everything installed fine, including an external package A my code needed. But, when I went to run nosetests or tox my code errored out, claiming package A had not been installed. BUT I CAN $%#@ SEE IT. LOOK, I TYPE pip list AND THERE IT IS!

What was happening, is that I was picking up both nose and tox from the base environment, which did not have A installed. I lost some more hair over this. People who know me will confirm that I can't afford such hair loss.

As a rule, if you want to use virtual envs, it is best to have a bare install of Python and then not install anything on top of that outside of a virtual environment.

Comments

Popular posts from this blog

A note on Python's __exit__() and errors

Python's context managers are a very neat way of handling code that needs a teardown once you are done. Python objects have do have a destructor method ( __del__ ) called right before the last instance of the object is about to be destroyed. You can do a teardown there. However there is a lot of fine print to the __del__ method. A cleaner way of doing tear-downs is through Python's context manager , manifested as the with keyword. class CrushMe: def __init__(self): self.f = open('test.txt', 'w') def foo(self, a, b): self.f.write(str(a - b)) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.f.close() return True with CrushMe() as c: c.foo(2, 3) One thing that is important, and that got me just now, is error handling. I made the mistake of ignoring all those 'junk' arguments ( exc_type, exc_val, exc_tb ). I just skimmed the docs and what popped out is that you need to return True or...

Store numpy arrays in sqlite

Use numpy.getbuffer (or sqlite3.Binary ) in combination with numpy.frombuffer to lug numpy data in and out of the sqlite3 database: import sqlite3, numpy r1d = numpy.random.randn(10) con = sqlite3.connect(':memory:') con.execute("CREATE TABLE eye(id INTEGER PRIMARY KEY, desc TEXT, data BLOB)") con.execute("INSERT INTO eye(desc,data) VALUES(?,?)", ("1d", sqlite3.Binary(r1d))) con.execute("INSERT INTO eye(desc,data) VALUES(?,?)", ("1d", numpy.getbuffer(r1d))) res = con.execute("SELECT * FROM eye").fetchall() con.close() #res -> #[(1, u'1d', <read-write buffer ptr 0x10371b220, size 80 at 0x10371b1e0>), # (2, u'1d', <read-write buffer ptr 0x10371b190, size 80 at 0x10371b150>)] print r1d - numpy.frombuffer(res[0][2]) #->[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] print r1d - numpy.frombuffer(res[1][2]) #->[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Note that for work where data ty...