Skip to main content

Python: To format or to concatenate

A while ago a kindly reader pointed out that Python's string .format method is, after all, a function, and carries with it some over head. I have some inner loop code that I could stand to run a little faster and I was looking for a way to speed things up without losing readability. In one part of the loop I was creating a string using the format statement. I wondered if I could speed things up by changing that to a concat.

So I first tested it out on some toy code:

def str_format(size=int(1e6)):
  for n in range(size):
    a = 'hi {:d} {:d} {:d}'.format(n, n+1, n+2)
  return a


def str_concat(size=int(1e6)):
  for n in range(size):
    a = 'hi ' + str(n) + str(n+1) + str(n+2)
  return a

In [448]: %timeit str_concat()
1 loops, best of 3: 996 ms per loop

In [449]: %timeit str_format()
1 loops, best of 3: 1.26 s per loop

So, the plain python concat is faster than the elegant way. This held with one variable or two variables too. This probably has to do with the complexity of the .format function, which offsets even the extra calls to str







Comments

Popular posts from this blog

Flowing text in inkscape (Poster making)

You can flow text into arbitrary shapes in inkscape. (From a hint here).

You simply create a text box, type your text into it, create a frame with some drawing tool, select both the text box and the frame (click and shift) and then go to text->flow into frame.

UPDATE:

The omnipresent anonymous asked:
Trying to enter sentence so that text forms the number three...any ideas?
The solution:
Type '3' using the text toolConvert to path using object->pathSize as necessaryRemove fillUngroupType in actual text in new text boxSelect the text and the '3' pathFlow the text

Pandas panel = collection of tables/data frames aligned by index and column

Pandas panel provides a nice way to collect related data frames together while maintaining correspondence between the index and column values:


import pandas as pd, pylab #Full dimensions of a slice of our panel index = ['1','2','3','4'] #major_index columns = ['a','b','c'] #minor_index df = pd.DataFrame(pylab.randn(4,3),columns=columns,index=index) #A full slice of the panel df2 = pd.DataFrame(pylab.randn(3,2),columns=['a','c'],index=['1','3','4']) #A partial slice df3 = pd.DataFrame(pylab.randn(2,2),columns=['a','b'],index=['2','4']) #Another partial slice df4 = pd.DataFrame(pylab.randn(2,2),columns=['d','e'],index=['5','6']) #Partial slice with a new column and index pn = pd.Panel({'A': df}) pn['B'] = df2 pn['C'] = df3 pn['D'] = df4 for key in pn.items: print pn[key] -> output …

Drawing circles using matplotlib

Use the pylab.Circle command

import pylab #Imports matplotlib and a host of other useful modules cir1 = pylab.Circle((0,0), radius=0.75, fc='y') #Creates a patch that looks like a circle (fc= face color) cir2 = pylab.Circle((.5,.5), radius=0.25, alpha =.2, fc='b') #Repeat (alpha=.2 means make it very translucent) ax = pylab.axes(aspect=1) #Creates empty axes (aspect=1 means scale things so that circles look like circles) ax.add_patch(cir1) #Grab the current axes, add the patch to it ax.add_patch(cir2) #Repeat pylab.show()