Skip to main content

numpy arrays and iterators

Is it better to access a numpy array with an iterator or indexing?

import numpy

# This is how I've always done it - straight python idiomatic usage
def iterate1(m=100000):
  a = numpy.empty(m)
  sum = 0
  for n in a:
    sum += n
  return sum

# Didn't know about this one, but it is the recommended one in the docs
def iterate2(m=100000):
  a = numpy.empty(m)
  sum = 0
  for n in numpy.nditer(a):
    sum += n
  return sum

#This is C-like 
def loop(m=100000):
  a = numpy.empty(m)
  sum = 0
  for n in range(a.size):
    sum += a[n]
  return sum

And the shootout?

>>> %timeit iterate1()
10 loops, best of 3: 35.4 ms per loop
>>> %timeit iterate2()
10 loops, best of 3: 63.7 ms per loop
>>> %timeit loop()
10 loops, best of 3: 45.1 ms per loop


>>> %timeit iterate1(1e6)
1 loops, best of 3: 368 ms per loop
>>> %timeit iterate2(1e6)
1 loops, best of 3: 605 ms per loop
>>> %timeit loop(1e6)
1 loops, best of 3: 443 ms per loop

So the pythonic one seems to be the best

Comments

Popular posts from this blog

A note on Python's __exit__() and errors

Python's context managers are a very neat way of handling code that needs a teardown once you are done. Python objects have do have a destructor method ( __del__ ) called right before the last instance of the object is about to be destroyed. You can do a teardown there. However there is a lot of fine print to the __del__ method. A cleaner way of doing tear-downs is through Python's context manager , manifested as the with keyword. class CrushMe: def __init__(self): self.f = open('test.txt', 'w') def foo(self, a, b): self.f.write(str(a - b)) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.f.close() return True with CrushMe() as c: c.foo(2, 3) One thing that is important, and that got me just now, is error handling. I made the mistake of ignoring all those 'junk' arguments ( exc_type, exc_val, exc_tb ). I just skimmed the docs and what popped out is that you need to return True or...

Store numpy arrays in sqlite

Use numpy.getbuffer (or sqlite3.Binary ) in combination with numpy.frombuffer to lug numpy data in and out of the sqlite3 database: import sqlite3, numpy r1d = numpy.random.randn(10) con = sqlite3.connect(':memory:') con.execute("CREATE TABLE eye(id INTEGER PRIMARY KEY, desc TEXT, data BLOB)") con.execute("INSERT INTO eye(desc,data) VALUES(?,?)", ("1d", sqlite3.Binary(r1d))) con.execute("INSERT INTO eye(desc,data) VALUES(?,?)", ("1d", numpy.getbuffer(r1d))) res = con.execute("SELECT * FROM eye").fetchall() con.close() #res -> #[(1, u'1d', <read-write buffer ptr 0x10371b220, size 80 at 0x10371b1e0>), # (2, u'1d', <read-write buffer ptr 0x10371b190, size 80 at 0x10371b150>)] print r1d - numpy.frombuffer(res[0][2]) #->[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] print r1d - numpy.frombuffer(res[1][2]) #->[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Note that for work where data ty...