Skip to main content

HDF5 is not for fast access

HDF5 is a good solution for storing large datasets on disk. Python's h5py library makes it possible to pretend that data stored on disk is just like an in memory array. It is important to keep in mind that the data is really stored on disk and is read in every time a slice or index into the data is taken.

import numpy
import h5py


def create_data(length=1e4):
  data = numpy.random.rand(length)
  with h5py.File('test.h5', 'w') as fp:
    fp.create_dataset('test', data=data)
  return data


def access_each_h5():
  y = 0
  with h5py.File('test.h5', 'r') as fp:
    for n in range(fp['test'].size):
      y += fp['test'][n]
  return y

def access_each_array(data):
  y = 0
  for n in range(data.size):
    y += data[n]
  return y


d = create_data()

>>> run test.py
>>> %timeit access_each_array(d)
100 loops, best of 3: 4.14 ms per loop
>>> %timeit access_each_h5()
1 loops, best of 3: 1.9 s per loop
That sobering difference in performance reminds us that we can't - performance wise - equate the two. When processing data from an hdf5 file, it is best to read in as large chunks as your memory will allow and do the heavy lifting in memory.

Comments

Popular posts from this blog

A note on Python's __exit__() and errors

Python's context managers are a very neat way of handling code that needs a teardown once you are done. Python objects have do have a destructor method ( __del__ ) called right before the last instance of the object is about to be destroyed. You can do a teardown there. However there is a lot of fine print to the __del__ method. A cleaner way of doing tear-downs is through Python's context manager , manifested as the with keyword. class CrushMe: def __init__(self): self.f = open('test.txt', 'w') def foo(self, a, b): self.f.write(str(a - b)) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.f.close() return True with CrushMe() as c: c.foo(2, 3) One thing that is important, and that got me just now, is error handling. I made the mistake of ignoring all those 'junk' arguments ( exc_type, exc_val, exc_tb ). I just skimmed the docs and what popped out is that you need to return True or...

Store numpy arrays in sqlite

Use numpy.getbuffer (or sqlite3.Binary ) in combination with numpy.frombuffer to lug numpy data in and out of the sqlite3 database: import sqlite3, numpy r1d = numpy.random.randn(10) con = sqlite3.connect(':memory:') con.execute("CREATE TABLE eye(id INTEGER PRIMARY KEY, desc TEXT, data BLOB)") con.execute("INSERT INTO eye(desc,data) VALUES(?,?)", ("1d", sqlite3.Binary(r1d))) con.execute("INSERT INTO eye(desc,data) VALUES(?,?)", ("1d", numpy.getbuffer(r1d))) res = con.execute("SELECT * FROM eye").fetchall() con.close() #res -> #[(1, u'1d', <read-write buffer ptr 0x10371b220, size 80 at 0x10371b1e0>), # (2, u'1d', <read-write buffer ptr 0x10371b190, size 80 at 0x10371b150>)] print r1d - numpy.frombuffer(res[0][2]) #->[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] print r1d - numpy.frombuffer(res[1][2]) #->[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Note that for work where data ty...