Skip to main content

Sleep number bed LCDs are defective

We bought a sleep number bed about 5 years ago. These beds come with a '20 year' warranty which sounds awesome, because it makes one think that a) The bed's are made well for the company to give such a warranty and b) It's a nice warranty.

Well, it's not THAT great. About 2 years ago the LCD display on the controller started to go on the fritz. It started with one segment of one digit and then progressed until a few weeks ago the display was simply blank. I did a quick search on the internet and it turns out that this is a very common problem.

We have a wired controller (because it was cheaper, I guess, it was a while ago). The refurbished replacement is going to cost us $60 with shipping and the original one would have cost us $140 or so. It does seem that we are getting a nice discount on their catalog price, but I don't think this is such a good deal.

Any how, the pump is working fine, so the actual cost of the controller was probably $10 or so, so I'm not entirely happy, unless it turns out the replacement is a double controller (It says Dual I-Series, I don't know what that means) and is wireless.

Comments

Popular posts from this blog

A note on Python's __exit__() and errors

Python's context managers are a very neat way of handling code that needs a teardown once you are done. Python objects have do have a destructor method ( __del__ ) called right before the last instance of the object is about to be destroyed. You can do a teardown there. However there is a lot of fine print to the __del__ method. A cleaner way of doing tear-downs is through Python's context manager , manifested as the with keyword. class CrushMe: def __init__(self): self.f = open('test.txt', 'w') def foo(self, a, b): self.f.write(str(a - b)) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.f.close() return True with CrushMe() as c: c.foo(2, 3) One thing that is important, and that got me just now, is error handling. I made the mistake of ignoring all those 'junk' arguments ( exc_type, exc_val, exc_tb ). I just skimmed the docs and what popped out is that you need to return True or...

Store numpy arrays in sqlite

Use numpy.getbuffer (or sqlite3.Binary ) in combination with numpy.frombuffer to lug numpy data in and out of the sqlite3 database: import sqlite3, numpy r1d = numpy.random.randn(10) con = sqlite3.connect(':memory:') con.execute("CREATE TABLE eye(id INTEGER PRIMARY KEY, desc TEXT, data BLOB)") con.execute("INSERT INTO eye(desc,data) VALUES(?,?)", ("1d", sqlite3.Binary(r1d))) con.execute("INSERT INTO eye(desc,data) VALUES(?,?)", ("1d", numpy.getbuffer(r1d))) res = con.execute("SELECT * FROM eye").fetchall() con.close() #res -> #[(1, u'1d', <read-write buffer ptr 0x10371b220, size 80 at 0x10371b1e0>), # (2, u'1d', <read-write buffer ptr 0x10371b190, size 80 at 0x10371b150>)] print r1d - numpy.frombuffer(res[0][2]) #->[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] print r1d - numpy.frombuffer(res[1][2]) #->[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Note that for work where data ty...