Skip to main content

h5py: the HDF file indexing overhead

Storing numpy arrays in hdf5 files using h5py is great, because you can load parts of the array from disk. One thing to note is that there is a varying amount of time overhead depending on the kind of indexing you use.

It turns out that it is fastest to use standard python slicing terminology - [:20,:] - which grabs well defined contiguous sections of the array.

If we use an array of consecutive numbers as an index we get an additional time overhead simply for using this kind of index.

If we use an array of non-consecutive numbers (note that the indecies have to be monotonic and non-repeating) we get yet another time overhead even above the array with consecutive indexes.

Just something to keep in mind when implementing algorithms.


import numpy, h5py

N = 1000
m = 50
f = h5py.File('index_test.h5','w')
f.create_dataset('data', data=numpy.random.randn(N,1000))
idx1 = numpy.array(range(m))
idx2 = numpy.array(range(N-m,N))
idx3 = numpy.random.choice(N,size=m,replace=False)
idx3.sort()

timeit f['data'][:m,:]
timeit f['data'][-m:,:]
timeit f['data'][idx1,:]
timeit f['data'][idx2,:]
timeit f['data'][idx3,:]
f.close()


# N = 1000
#-> 1000 loops, best of 3: 279 µs per loop
#-> 1000 loops, best of 3: 281 µs per loop
#-> 1000 loops, best of 3: 888 µs per loop
#-> 1000 loops, best of 3: 891 µs per loop
#-> 1000 loops, best of 3: 1.27 ms per loop

# N = 10000
#-> 1000 loops, best of 3: 258 µs per loop
#-> 1000 loops, best of 3: 258 µs per loop
#-> 1000 loops, best of 3: 893 µs per loop
#-> 1000 loops, best of 3: 892 µs per loop
#-> 1000 loops, best of 3: 1.3 ms per loop

Comments

Popular posts from this blog

A note on Python's __exit__() and errors

Python's context managers are a very neat way of handling code that needs a teardown once you are done. Python objects have do have a destructor method ( __del__ ) called right before the last instance of the object is about to be destroyed. You can do a teardown there. However there is a lot of fine print to the __del__ method. A cleaner way of doing tear-downs is through Python's context manager , manifested as the with keyword. class CrushMe: def __init__(self): self.f = open('test.txt', 'w') def foo(self, a, b): self.f.write(str(a - b)) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.f.close() return True with CrushMe() as c: c.foo(2, 3) One thing that is important, and that got me just now, is error handling. I made the mistake of ignoring all those 'junk' arguments ( exc_type, exc_val, exc_tb ). I just skimmed the docs and what popped out is that you need to return True or...

Remove field code from Word document

e.g. before submitting a MS, or hand manipulating some formatting because Word does things (like cross-references) so half-assed [from here ] Select all the text (CTRL-A) Press Ctrl+Shift+F9 Editing to remove anonymous comments that only contain thanks. I really appreciate the thanks, but it makes it harder to find comments that carry pertinent information. I'm also going to try and paste informative comments in the body of the post to make them easier to find.

h5py and multiprocessing

The HDF5 format has been working awesome for me, but I ran into danger when I started to mix it with multiprocessing. It was the worst kind of danger: the intermittent error. Here are the dangers/issues in order of escalation (TL;DR is use a generator to feed data from your file into the child processes as they spawn. It's the easiest way. Read on for harder ways.) An h5py file handle can't be pickled and therefore can't be passed as an argument using pool.map() If you set the handle as a global and access it from the child processes you run the risk of racing which leads to corrupted reads. My personal runin was that my code sometimes ran fine but sometimes would complain that there are NaNs or Infinity in the data. This wasted some time tracking down. Other people have had this kind of problem [ 1 ]. Same problem if you pass the filename and have the different processes open individual instances of the file separately. The hard way to solve this problem is to sw...