Skip to main content

R

I like learning languages and after a little kerfuffle with a Python package I was wondering if there was anything out there for statistical data analysis that might not have so many hidden pitfalls in ordinary places. I knew about R from colleagues but I never payed much attention to it, but I decided to give it a whirl. Here are some brief preliminary notes in no particular order

PLUS
  • Keyword arguments!
  • Gorgeous plotting
  • Integrated workspace (including GUI package manager)
  • Very good documentation and help
  • NaN different from NA
  • They have their own Journal. But what do you expect from a bunch of mathematicians?
  • Prints large arrays on multiple lines with index number of first element on each line on left gutter
  • Parenthesis autocomplete on command line
  • RStudio, though the base distribution is pretty complete, with package manager, editor and console.

MINUS
  • Everything is a function. I love this, but it means commands in the interpreter always need parentheses. I'd gotten used to the Python REPL not requiring parentheses.
  • The assignment operator is two characters rather than one
  • Indexing starts from 1. Oh god, could we PLEASE standardize this either way?
  • Not clear how well R handles "big data" (Data that can't be loaded into memory at once) or parallelization. (To look up: bigmemory)

Comments

Popular posts from this blog

A note on Python's __exit__() and errors

Python's context managers are a very neat way of handling code that needs a teardown once you are done. Python objects have do have a destructor method ( __del__ ) called right before the last instance of the object is about to be destroyed. You can do a teardown there. However there is a lot of fine print to the __del__ method. A cleaner way of doing tear-downs is through Python's context manager , manifested as the with keyword. class CrushMe: def __init__(self): self.f = open('test.txt', 'w') def foo(self, a, b): self.f.write(str(a - b)) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.f.close() return True with CrushMe() as c: c.foo(2, 3) One thing that is important, and that got me just now, is error handling. I made the mistake of ignoring all those 'junk' arguments ( exc_type, exc_val, exc_tb ). I just skimmed the docs and what popped out is that you need to return True or...

Remove field code from Word document

e.g. before submitting a MS, or hand manipulating some formatting because Word does things (like cross-references) so half-assed [from here ] Select all the text (CTRL-A) Press Ctrl+Shift+F9 Editing to remove anonymous comments that only contain thanks. I really appreciate the thanks, but it makes it harder to find comments that carry pertinent information. I'm also going to try and paste informative comments in the body of the post to make them easier to find.

h5py and multiprocessing

The HDF5 format has been working awesome for me, but I ran into danger when I started to mix it with multiprocessing. It was the worst kind of danger: the intermittent error. Here are the dangers/issues in order of escalation (TL;DR is use a generator to feed data from your file into the child processes as they spawn. It's the easiest way. Read on for harder ways.) An h5py file handle can't be pickled and therefore can't be passed as an argument using pool.map() If you set the handle as a global and access it from the child processes you run the risk of racing which leads to corrupted reads. My personal runin was that my code sometimes ran fine but sometimes would complain that there are NaNs or Infinity in the data. This wasted some time tracking down. Other people have had this kind of problem [ 1 ]. Same problem if you pass the filename and have the different processes open individual instances of the file separately. The hard way to solve this problem is to sw...