Skip to main content

Octoshape (octoshapepm)

I was first alerted to this when my mac asked me if I wanted to allow octoshapepm to accept incoming connections. This led me to a web search which led me to an interesting finding that CNN is basically installing a program that uses your computer to redistribute your content, but not really telling you that it is doing it.

The program itself is made by this company. This article gives a brief non-marketing overview of what the program actually does and how to get rid of it if you wish.

In short, as installed by CNN, the program acts as a realtime file distribution system, like bittorrent, except that its probably running without your permission, helping CNN deliver content using part of your bandwidth (you are uploading video data just as you are downloading it). There are security issues with this in addition to an issue of principle, where you are most likely being tricked into giving up part of your bandwidth to save CNN some money as well as exposing a new security hole.

I note that on my mac the program exits when I'm not watching a CNN stream, but I don't know if that is because I denied the program access to the internet (i.e I don't know if octoshape would continue to run after I quit if there were other clients pulling data from my computer).

Any how, the bottom line is that you should be aware that there is this program that is running when you watch certain CNN streams that has access to your computer and is uploading data from your computer to other users.

Comments

  1. Thanks for posting this, I've seen this pop up a few times but had not noticed it was always at CNN. Will watch for it from now on.

    ReplyDelete

Post a Comment

Popular posts from this blog

A note on Python's __exit__() and errors

Python's context managers are a very neat way of handling code that needs a teardown once you are done. Python objects have do have a destructor method ( __del__ ) called right before the last instance of the object is about to be destroyed. You can do a teardown there. However there is a lot of fine print to the __del__ method. A cleaner way of doing tear-downs is through Python's context manager , manifested as the with keyword. class CrushMe: def __init__(self): self.f = open('test.txt', 'w') def foo(self, a, b): self.f.write(str(a - b)) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.f.close() return True with CrushMe() as c: c.foo(2, 3) One thing that is important, and that got me just now, is error handling. I made the mistake of ignoring all those 'junk' arguments ( exc_type, exc_val, exc_tb ). I just skimmed the docs and what popped out is that you need to return True or...

Store numpy arrays in sqlite

Use numpy.getbuffer (or sqlite3.Binary ) in combination with numpy.frombuffer to lug numpy data in and out of the sqlite3 database: import sqlite3, numpy r1d = numpy.random.randn(10) con = sqlite3.connect(':memory:') con.execute("CREATE TABLE eye(id INTEGER PRIMARY KEY, desc TEXT, data BLOB)") con.execute("INSERT INTO eye(desc,data) VALUES(?,?)", ("1d", sqlite3.Binary(r1d))) con.execute("INSERT INTO eye(desc,data) VALUES(?,?)", ("1d", numpy.getbuffer(r1d))) res = con.execute("SELECT * FROM eye").fetchall() con.close() #res -> #[(1, u'1d', <read-write buffer ptr 0x10371b220, size 80 at 0x10371b1e0>), # (2, u'1d', <read-write buffer ptr 0x10371b190, size 80 at 0x10371b150>)] print r1d - numpy.frombuffer(res[0][2]) #->[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] print r1d - numpy.frombuffer(res[1][2]) #->[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Note that for work where data ty...